Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Siberian boreal forests have experienced increases in fire extent and intensity in recent years, which may threaten their role as carbon (C) sinks. Larch forests (Larixspp.) cover approximately 2.6 million km2across Siberia, yet little is known about the magnitude and drivers of carbon combustion in these ecosystems. To address the paucity of field‐based estimates of fuel load and consumption in Siberian larch forests, we sampled 41 burned plots, one to two years after fire, in Cajander larch (Larix cajanderi) forests in the Republic of Sakha (Yakutia), Russia. We estimated pre‐fire carbon stocks and combustion with the objective of identifying the main drivers of carbon emissions. Pre‐fire aboveground (trees and woody debris) and belowground carbon stocks at our study plots were 3.12 ± 1.26 kg C m−2(mean ± standard deviation) and 3.50 ± 0.93 kg C m−2. We found that combustion averaged 3.20 ± 0.75 kg C m−2, of which 78% (2.49 ± 0.56 kg C m−2) stemmed from organic soil layers. These results suggest that severe fires in Cajander larch forests can result in combustion rates comparable to those observed in North American boreal forests and exceeding those previously reported for other forest types and burning conditions in Siberia. Carbon combustion was driven by both fire weather conditions and landscape variables, with pre‐fire organic soil depth being the strongest predictor across our plots. Our study highlights the need to better account for Siberian larch forest fires and their impact on the carbon balance, especially given the expected climate‐induced increase in fire extent and severity in this region.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract As climate warms, tree density at the taiga–tundra ecotone (TTE) is expected to increase, which may intensify competition for belowground resources in this nitrogen (N)‐limited environment. To determine the impacts of increased tree density on N cycling and productivity, we examined edaphic properties indicative of soil N availability along with aboveground and belowground tree‐level traits and stand characteristics related to carbon (C) and N cycling across a tree density gradient of monodominant larch (Larix cajanderi) at the TTE in far northeastern Siberia. We found no consistent evidence from soil, tree, or stand‐level N cycling characteristics of lower N availability or greater intraspecific competition for N with increased density. Active layer thickness declined, but resin‐sorbed N and soil organic layer thickness did not covary with increased tree density. There was, however, greater allocation belowground to stand‐level coarse and fine roots with increased tree density, an allocation pattern suggestive of limited soil resources. Foliar traits related to C (%C, δ13C, and resorption) were responsive to density indicating the importance of non‐nutrient resources, like light, to foliar stoichiometry. As tree density increased and individual trees had lower productivity, tree‐level N and biomass pools aboveground and belowground declined tracking decreases in N uptake, N resorption, N use efficiency, and allocation to slow cycling tissues like wood. At the stand level, our findings show high N turnover with increased N acquisition, allocation to short‐lived tissues with relatively high N content and reduced N residence time, and greater stand productivity as tree density increased. Yet, these positive relationships were curtailed at the highest tree densities. Our observations of shifts in biomass, C and N allocation, and loss aboveground, along with greater root density with increased tree density, could have strong impacts on C and N cycling and should be represented in models of TTE dynamics and feedbacks to climate.more » « less
-
Abstract Boreal forests harbor as much carbon (C) as the atmosphere and significant amounts of organic nitrogen (N), the nutrient most likely to limit plant productivity in high‐latitude ecosystems. In the boreal biome, the primary disturbance is wildfire, which consumes plant biomass and soil material, emits greenhouse gasses, and influences long‐term C and N cycling. Climate warming and drying is increasing wildfire severity and frequency and is combusting more soil organic matter (SOM). Combustion of surface SOM exposes deeper older layers of accumulated soil material that previously escaped combustion during past fires, here termed legacy SOM. Postfire SOM decomposition and nutrient availability are determined by these layers, but the drivers of legacy SOM decomposition are unknown. We collected soils from plots after the largest fire year on record in the Northwest Territories, Canada, in 2014. We used radiocarbon dating to measure Δ14C (soil age index), soil extractions to quantify N pools and microbial biomass, and a 90‐day laboratory incubation to measure the potential rate of element mineralization and understand patterns and drivers of legacy SOM C decomposition and N availability. We discovered that bulk soil C age predicted C decomposition, where cumulatively, older soil (approximately −450.0‰) produced 230% less C during the incubation than younger soil (~0.0‰). Soil age also predicted C turnover times, with old soil turnover 10 times slower than young soil. We found respired C was younger than bulk soil C, indicating most C enters and leaves relatively quickly, while the older portion remains a stable C sink. Soil age and other indices were unrelated to N availability, but microbial biomass influenced N availability, with more microbial biomass immobilizing soil N pools. Our results stress the importance of legacy SOM as a stable C sink and highlight that soil age drives the pace and magnitude of soil C contributions to the atmosphere between wildfires.more » « less
An official website of the United States government
